
IM-POST-736562Views expressed here do not necessarily reflect the opinion of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52 07NA27344. Lawrence Livermore National Security, LLC

• Future extreme-scale architectures will contain computation nodes with

abundant parallelism provided by heterogeneous components (such as GPUs)

in order to meet performance goals within power constraints.

 Many existing High-Performance Computing (HPC) applications exploit only

coarse-grain parallelism via MPI, leaving tens of thousands of serial inner loops.

Very few of them support fine-grain threading exploiting GPUs.

• Existing parallelization tools mostly focus on Fortran or C applications.

 Many LLNL applications are written in C++ with high-level abstractions

represented as complex types : classes and templates …

 Rich semantics (meanings) are associated with these abstractions

• a->foo(x) : x is read only by a->foo()

• STL::vector<T> : elements stored contiguously

• Loop using iterators: semantically equal to a classic for loop using an integer

loop variable

 Traditional tools depending on conventional compilers using low level internal

representation (IR)

 Difficult to discover high-level abstractions

 Even more challenging to extract/leverage associated semantics

• Recognize high-level abstractions (complex C++ classes, templates, etc.) from

Abstract Syntax Tree generated by the ROSE source-to-source compiler

• Encode application semantics via specification files

• Extend classic parallelization algorithms to exploit application semantics

• Standardize the semantics representation: ontology-based formats (OWL,

JSON-LD)

• Support linearized array access: a[c1*i+c2*j + c3], often subscript terms are

calculated separately in advance

• Incorporate profitability analysis: parallelizable worth parallelizing

• Generate OpenMP 4.x directives for GPUs

Motivation Details of Semantics-Aware Automatic Parallelization Results

Approach

Ongoing and Future Work

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

Chunhua “Leo” Liao

AutoPar: Semantics-Aware Automatic Insertion of OpenMP Directives

Semantics
Specification

Serial Code

OpenMP
Code

Loop
Normalization

Alias
Analysis

Dependence
Analysis

Variable
Classification

Dependence
Elimination

Side Effect
Analysis

class floatArray { // user defined array abstraction

alias none; overlap none; //elements are alias-free and non-overlapping

is_fixed_sized_array { //semantic-preserving functions as a fixed-sized array

length(i) = {this.size()}; // array semantics: obtain length

element(i) = {this.operator[](i); this.elem(i);}; // array element access semantics

};

};

std::list<SgFunctionDef*> findCFunctionDefinition(SgNode* root){

read {root}; modify {result}; //side effects of a function

return unique; //return a unique set

}

operator pow(double val1, double val2)

{

modify none; read {val1, val2}; alias none;

}

0

10

20

30

40

50

60

70

ProxyApp1 ProxyApp2

Numbers of parallelized loops

Vendor Compiler AutoPar Manual

0

10

20

30

40

50

60

Effectiveness of Semantics-Awareness

Vendor Compiler AutoPar W/O Semantics

AutoPar+ Func. Side Effects Semantics AutoPar + Pointer Aliasing Semantics

AutoPar + Indirect Array Access Semantics

Additional features requested while working with LLNL application

teams:

1. Undo loop normalization: users want their loops unchanged.

2. A helper tool to move variable declarations into innermost scopes: reducing

the number of shared variables passed around

3. Generate patches instead of outputting lots of files with scattered changes

4. Support checking correctness of existing OpenMP directives

5. Verify correctness of generated OpenMP codes: using third party tools like

Intel Inspector to catch data races. User-provided semantics can be wrong.

Before After

void interpolate1D(
class floatArray &fineGrid,
class floatArray &coarseGrid)

{
…
for (i = 1; i < _var_0; i += 1) {

fineGrid.elem(i) =fineGrid.elem(i)+1;
}

}

void interpolate1D(class floatArray
&fineGrid,class floatArray &coarseGrid)
{ ..
#pragma omp parallel for private (i)
firstprivate (_var_0)

for (i = 1; i <= _var_0 - 1; i += 1) {
fineGrid.elem (i) = fineGrid. elem (i) + 1;

}
}

More info: http://rosecompiler.org/ROSE_HTML_Reference/auto_par.htmlAn example semantics specification file

